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Naturalistic driving studies involving instrumented vehicles provide video and 
dynamic data on safety-relevant driving incidents, including crashes, near-
crashes, and other crash-relevant conflicts.  In addition to providing “instant 
replays” of these events, a major advantage of the naturalistic driving 
methodology is its potential to provide exposure and other data on normal, 
non-incident driving.  “Baseline” data from naturalistic driving studies can 
document the parameters of driving conditions and the frequency of various 
driver behaviors and states.  The comparison of baseline data with incident 
data permits a determination of the relative risk associated with various 
driving conditions and behaviors.  Such comparisons and risk determinations 
are not normally possible for conventional crash data sets.  Exposure-risk 
analysis employing odds ratios or other statistical comparisons may be the 
most scientifically rigorous approach to assessing the safety effects of various 
large truck driving conditions and driver behaviors.  The FMCSA-sponsored 
Commercial Vehicle Data Collection and Countermeasure Assessment project 
has used naturalistic driving data from the NHTSA-sponsored Drowsy Driver 
Warning System Field Operational Test to explore the genesis and correlates 
of crashes, near-crashes, and crash-relevant conflicts, and differential driver 
risk.  This paper reports highlights of the exposure-risk analysis, comparing 
the conditions of occurrence of these incidents to control data from analyst 
observations of randomly selected baseline driving epochs. Compared to 
baseline epochs (exposure), safety-critical events occurred much more 
frequently on non-divided highways, in construction zones, at or near 
intersections, on entrance/exit ramps, during daylight, and when traffic density 
was high.  Extreme disproportionate risk was also observed among the 95 
drivers in the study.  This is the largest naturalistic driving study ever 
conducted on long-haul commercial driving, and is among the first to perform 
systematic exposure-risk analysis.  

 
 
INTRODUCTION AND PROBLEM BACKGROUND 
Under the sponsorship of the Federal Motor Carrier Safety Administration (FMCSA) and the 
National Highway Traffic Safety Administration (NHTSA), the Virginia Tech Transportation 
Institute (VTTI) has conducted several “naturalistic driving” instrumented vehicle studies 
involving commercial trucks.  The FMCSA-sponsored Commercial Vehicle Data Collection and 
Countermeasure Assessment project (Hanowski et al., 2004; Hickman et al., 2005) is using data 
from the NHTSA-sponsored Drowsy Driver Warning System (DDWS) Field Operational Test 
(FOT) and planned additional data collection to gain new knowledge of the fundamental aspects 
of commercial vehicle safety, including heavy vehicle safety events, traffic conflict assessment, 
countermeasure identification, associations between driver alertness and safety performance, 
driving patterns and work/rest schedules, and correlates of driver risk.  Phase I of the project has 
been completed, and includes data from 46 instrumented trucks and 95 volunteer commercial 
driver subjects encompassing almost 48,000 hours of driving data.  
 
The analysis employed a database of classification variables used to compare the following basic 
types of driving events or incidents: crashes (14), tire strike “crashes” (14), near-crashes (98) 
crash-relevant conflicts (789), total safety-critical events (the sum of the previous, 915), and 
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baseline (control) epochs (1,072).  For simplicity, the current paper provides primarily 
aggregated event data for the 915 total safety-critical events, and compares these to baseline 
epochs.  The full report (Hickman et al., 2005) provides data for all the above event categories. 
 
Naturalistic driving studies provide important causation and risk data to compliment crash 
investigation studies such as the FMCSA/NHTSA Large Truck Crash Causation Study (LTCCS).  
Although most of the data obtained are for traffic incidents rather than actual crashes, these 
events can be reduced and analyzed “as if” they were crashes through the observation of 
recorded videos and associated dynamic data.  The issue of validation of non-crash event data 
vis-à-vis crash data is beyond the scope of this paper, but there are undeniable similarities in 
conditions of occurrence, scenarios, and critical driver errors. 
 
Another major advantage of naturalistic driving data is that control data can be readily obtained.  
Naturalistic driving studies like the current study are not experiments in the formal sense, since 
there is no manipulation of conditions.  Nevertheless, comparing event data to control data (i.e., 
randomly selected time periods) provides a basis for assessing and quantifying the effects of 
various factors on the risk of event occurrence.  Regardless of specific causal attributions, 
conditions differentially associated with event occurrence or non-occurrence reflect differential 
relative risk in those situations.  Such event-baseline comparisons and risk quantifications are 
typically not performed for crash investigation data. 
 
Another type of exposure-risk comparison is among different drivers – that is, high-risk drivers 
versus those with lower risk.  A recent study (Knipling et al., 2004) reviewed the evidence for 
differential crash risk among commercial drivers and explored personal factors associated with 
differential driver risk.  The current study provides additional strong evidence that risk is 
disproportionately distributed among drivers, with a relatively small percentage of drivers being 
associated with a major portion of aggregate risk.   
 
METHODOLOGY 
Instrumented vehicle data were collected from commercial trucks during the normal operations 
of three long-haul trucking companies.  This included one truckload and two less-than-truckload 
operations.  As indicated above, subjects were also participating in an experimental study of the 
DDWS and thus were assigned to either an experimental or control group.  However, data for the 
two groups were similar and were generally aggregated for the incident causation analysis.  All 
the data presented in the current paper are aggregated across all 95 participating Phase I drivers. 
 
Forty-six (46) truck tractors were instrumented.  A Data Acquisition System (DAS) was installed 
in tractors to collect data continuously whenever the trucks were on and in motion.  Three types 
of data were collected continuously by the vehicle instrumentation: video, dynamic sensor, and 
audio.  Four video cameras were oriented as follows: (i) forward road scene, (ii) backward from 
driver's face camera, (iii) rearward from the left side of the tractor, and (iv) rearward from the 
right side of the tractor (see Figure 1).  Low-level infrared lighting (not visible to the driver) 
illuminated the vehicle cab so drivers’ faces and hands could be viewed via the camera during 
nighttime driving.  No cameras or other sensors were mounted on trailers; this limited the 
analysis to primarily those events occurring in front and at the sides of the instrumented vehicle.  
Recorded dynamic data included speed, longitudinal acceleration (e.g., indicative of braking 
levels), and lateral acceleration.  Vehicles were also equipped with lane trackers, and forward-
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looking radar units.  A pushbutton “incident box” microphone permitted drivers to make verbal 
comments about traffic incidents, but was rarely used by subjects. 

 

 

 

 

 

 

 

 

 

Figure 1. Camera directions and approximate fields-of-view. 
There were three primary steps in detecting and classifying safety-critical events: (i) identifying 
potential events, mostly through the use of an event trigger program, (ii) checking the validity of 
these triggered events, and (iii) applying the data directory to verified conflict events.  To  
identify events, a software program scanned the dynamic dataset to identify notable actions, 
including hard braking, quick steering maneuvers, and short times-to-collision.  Threshold values 
of these parameters (or “triggers”) were established to flag events for further review.  In addition, 
a small number of events were flagged for review by the driver via the incident button and 
fortuitously by analysts reviewing non-flagged portions of the data.  Because of the huge volume 
of data (~48,000 hours), there was no comprehensive review of all recorded driving data.   
 
Events judged to be valid traffic conflicts were classified using a detailed data directory of 54 
variables and associated data elements.  This included classification variables relating to each 
overall event, to the subject vehicle or V1 (the truck) and driver, and (to a limited extent) the 
other involved vehicle/driver (V2) or non-motorist.  Most of the variables were the same, or 
similar, to those used in major national crash databases such as the General Estimates System 
(GES) and the LTCCS. 
 
For each driver subject during every week of driving, one 60-second baseline epoch was selected 
to create a control data set of normal driving.  Traffic conflict-specific variables such as “critical 
event” and avoidance maneuver were not relevant to such baseline epochs, but events relating to 
the conditions of occurrence were relevant and were coded.  This included variables such as 
time, day-of-week, weather, roadway type, and traffic conditions.  Driver behaviors were also 
recorded, but this was limited to behaviors that might occur in normal driving (e.g., looking out 
the side window), as opposed to driving errors (e.g., failure to see a crash threat). 
 
The comparison of safety-critical event and baseline statistics provided an assessment of the 
increased risk associated with the condition or behavior under examination.  Odds ratios were 
used to compare the relative likelihood of a safety-critical event under particular circumstances 
(e.g., undivided highways) to the likelihood of the event under other circumstances (e.g., divided 
highways).  These comparisons are the principal subject of this paper, although data are also 
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presented comparing individual driver exposure to risk to document and quantify differential risk 
within driver subject pool.  The full project report (Hickman et al., 2005) analyzes the various 
event types and aggregated events per all 54 variables, as well as comparisons to baseline epochs 
for all applicable variables.    

 
RESULTS:  SAFETY-CRITICAL EVENT ANALYSIS 
Although event analysis per se is not the main topic of this paper, the study analyzed many 
variables relating to the characteristics and key dynamic events occurring within safety-critical 
incidents, such as pre-incident movements, critical events, critical reasons, avoidance maneuvers,  
and “accident” types (for non-crashes based on an extrapolation of the most likely crash type that 
could have occurred).  Such variables are not applicable to normal, non-incident driving.  But the 
915 safety-critical events were analyzed in the same way that crashes would be analyzed per 
these variables.  The most common “accident” types were those where V1 (the truck) was the 
potential striking vehicle in a rear-end crash.  When the critical reason was assigned to V1, the 
most commonly cited reasons (in descending order) were inadequate evasive action, internal 
distraction, external distraction, misjudgment of gap or others speed, or too fast for conditions. 
    
Review of video and other naturalistic driving data in this study and others has revealed a 
common sequence in many incidents:  1) unsafe pre-incident behavior or maneuver (e.g., 
speeding, tailgating, unsafe turn); 2) transient driver inattention (which may be related to driving, 
such as mirror use, or unrelated, such as reaching for an object); and 3) an unexpected traffic 
event, such as unexpected stopping by the vehicle ahead.  Not all of these elements occur in 
every incident, but often two or all three are seen.  As noted, the full report (Hickman et al., 
2005) contains detailed data on multiple variables describing safety-critical events. 

 
RESULTS:  EVENT-BASELINE COMPARISONS ON SELECTED VARIABLES 
A subset of study data for variables coded for both safety-critical events and baseline epochs is 
provided here.  The percentages shown in the tables are column percentages for each category.  
As noted, only the aggregated data for the 915 total safety-critical events are shown in 
comparison to the control data (1,072 baseline epochs).  The full study report contains data for 
all event categories and many more variables than are cited here. 
 
Trafficway Flow (Divided vs. Undivided Roadway) 
Table 1 displays the frequency and percentage of Trafficway Flow codes.  Comparing baseline 
epochs to safety-critical events reveals a sharp difference in the distribution of locations; most 
notably, only 9.1% of baseline epochs occurred on the two categories of undivided roadway (i.e., 
1.3% + 7.8%) versus 33.6% of safety-critical events.  A Chi-Square statistical test was used to 
compare the two distributions.  A 2 Event (Safety Critical Event, Baseline Epoch) X 5 
Trafficway Flow [Not physically divided (center 2-way turn lane, Not physically divided (2-way 
trafficway), Divided, One-Way Trafficway, Unknown] Chi-Square showed a highly significant 
difference (X2

(4)

 

 = 222.441, p < .001).  The proportions of all trafficway flow conditions other 
than “divided” were higher for safety-critical events than for baseline epochs. 

An odds ratio was calculated to compare the relative risk associated with “other” versus divided.  
The odds ratio is a way of comparing whether the probability of a certain outcome is the same 
for two conditions.  In this analysis, the two outcomes are safety-critical events (“incidents”) and 
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baseline epochs (“non-incidents”).  An odds ratio of 1 would imply that the outcome was equally 
likely under both conditions.  An odds ratio greater than one would imply that the outcome was 
more likely in the first condition while an odds ratio of less than one would imply that the 
outcome was less likely.  The odds ratio for “other” versus divided highways for incidents versus 
baseline epochs is provided by reduction of the following expression:  
([48+260+40+8]/[14+84+15+0])/(559/959) = (356/113)/(559/959) = 5.4.  This indicates that 
drivers were 5.4 times more likely to be involved in an incident if they were not on a divided 
highway.  Like most statistics, this odds ratio is a best estimate with a surrounding margin of 
error or confidence interval.  For brevity, these are not provided in the current analysis.   
 

Table 1.  Frequency and percentage of Trafficway Flow conditions. 

Trafficway Flow: Total Safety 
Critical Events 

Baseline 
Epochs 

Divided 5
59 

61.1
% 

95
9 

89.5
% 

Not physically divided (center 2-way turn lane) 4
8 5.2% 14 1.3% 

Not physically divided (2-way trafficway) 2
60 

28.4
% 84 7.8% 

One-way trafficway 4
0 4.4% 15 1.4% 

Unknown 8 0.9% 0 0.0% 

Total 
9

15 
100.0
% 

10
72 

100.
0% 

 
 
Construction Zones 
Observation of baseline epochs indicated that trucks were in construction zones or in “related” 
areas less than 1% of the time, but a total of 6.0% of detected safety-critical events occurred in 
these areas.  While 6.0% is not a large percentage, the relative difference between the two 
percentages (event and baseline) indicated that this was a significant factor increasing relative 
risk.  A Chi-Square comparison indicates that these two distributions were significantly different 
at  p < .001.  The odds ratio of safety-critical events versus baseline epochs in construction zone 
or related locations compared to non-construction or unknown locations was 8.5.  
 

Table 2.  Frequency and percentage of Construction Zone conditions. 

Construction Zone Related: Total Safety 
Critical Events 

Baseline 
Epochs 

Not construction zone related 85
9 

93.9
% 

1
064 

99.3
% 

Construction zone 43 4.7
% 7 0.7

% 

Construction zone related 12 1.3 1 0.1
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% % 

Unknown 1 0.1
% 0 0.0

% 

Total 
91

5 
100.

0% 
1

072 
100.

0% 

 
 
Similar large differences between event and baseline incidence were observed for other types of 
“non-normal” highway locations.  For example, the percentages of safety-critical events 
occurring at intersections and on entrance-exit ramps were many times the corresponding 
baseline epoch percentages for these locations.  It is clear that normal, non-junction sections of 
roadway were associated with low risk, while areas with restricted geometry and/or likely 
interaction with other vehicles had greatly increased relative risk.    
Traffic Density 
“Level of Service” (LOS) is a subjective variable that characterizes traffic density, or, more 
specifically, the degree of restriction of vehicle movement due to the presence of other vehicles 
on the roadway.  LOS A indicates that a vehicle’s travel is unaffected by other vehicles; higher 
levels indicate higher degrees of restriction.  The majority of both safety-critical events and 
baseline epochs occurred under unrestricted “A” conditions, but one can see in Table 3 that 
higher traffic densities were associated with greater probabilities of event involvement.  The 
distribution differences were statistically significant at  p < .001, and the odds ratio for event 
involvement for high traffic density (LOS C-F) versus low density (LOS A-B) was 5.9. 
   

Table 3.  Frequency and percentage of Traffic Density (Level of Service) conditions. 

Traffic Density: Total Safety 
Critical Events 

Baseline 
Epochs 

Level of Service A 
5

43 59.3% 
7

78 72.6% 

Level of Service B 
2

16 23.6% 
2

58 24.1% 

Level of Service C 
9

9 10.8% 
3

3 3.1% 

Level of Service D 
3

7 4.0% 3 0.3% 

Level of Service E 
1

6 1.7% 0 0.0% 

Level of Service F 3 0.3% 0 0.0% 

Unknown 1 0.1% 0 0.0% 

Total 
9

15 100.0% 
1

072 100.0% 

 
Light Condition 
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Event occurrence was also found to be related to light condition, but perhaps not in the direction 
that most would expect.  The majority of both safety-critical events and baseline epochs occurred 
during daylight, but the event daylight percentage (73.4%) was higher than the baseline daylight 
percentage (56.4%).  Conversely, the percentages for dark and various other light conditions 
tended to be lower for events than baseline epochs.  The distributions were significantly different 
at p < .001, and the event involvement odds ratio of daylight to all other conditions was 2.1.  
That is, risk was greater during daylight.  This finding probably reflects the increased traffic 
density generally found during daylight hours, although the data have not yet been analyzed in-
depth to verify this interpretation.  If this interpretation is confirmed, it would mean that, for the 
types of events captured, daytime traffic density generates more risk for trucks than do nighttime 
factors like driver fatigue and reduced visibility.   
 

Table 4.  Frequency and percentage of Light Conditions. 

Light Condition: Total Safety 
Critical Events 

Baseline 
Epochs 

Daylight 6
72 73.4% 6

05 56.4% 

Dark 1
64 17.9% 4

02 37.5% 

Dark but lighted 6
1 6.7% 3

8 3.5% 

Dawn 7 0.8% 1
5 1.4% 

Dusk 1
1 1.2% 1

2 1.1% 

Total 
9

15 
100.0
% 

1
072 100.0% 
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Time-of-Day 
Time-of-day relates to various other factors, including light condition, traffic, operational 
schedules, and fatigue.  For time-of-day analysis, the 915 safety-critical events were 
disaggregated into 625 multi-vehicle and 290 single-vehicle events.  The occurrence of multi-
vehicle events compared to baseline exposure was strongly related to time-of-day (p < .001), 
with hours from 23:00 to 6:00 (11pm to 6am) significantly underrepresented and other times 
generally overrepresented.  This overrepresentation begins in the mid-morning, peaks during the 
evening rush hours, and subsides during the evening.  In contrast, the distribution of single 
vehicle events was not significantly different from the baseline distribution.  Figure 2 shows 
three-hour rolling averages of the percent distributions of baseline epochs, multiple vehicle 
events, and single vehicle events.    
 

Exposure and Events by Time-of-Day
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Figure 2.  Percent distribution of baseline epochs, multi-vehicle events, and single-vehicle 
events by time-of-day (3-hour rolling averages) 
 
Weather 
One might expect adverse weather conditions to be associated with increased probabilities of 
safety-critical events, but this was not the case in the current data set.  Table 5 shows that the 
vast majority of both safety-critical events and baseline epochs occurred during clear conditions.   
What is surprising, perhaps, is that the two distributions were almost identical and were not 
significantly different statistically.  A larger data set might well show increased risk associated 
with extreme conditions like snow and sleet, but there were not sufficient events or baseline 
epochs in the current data set to demonstrate this. 
 
Safety Belt Use 
Driver safety belt use was recorded based on observation of each event and baseline epoch, and 
was less than 60% for each category.  The question of primary interest, though, was whether 
safety belt use would be associated with greater risk of event involvement.  This might reflect 
driver personality tendencies; i.e., belt use associated with conscientiousness and caution and 
non-use associated with risk-taking.  Other studies have indeed cited such behavioral tendencies 
associated with belt use or non-use (Lancaster and Ward, 2002).  However, in the current study 
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Table 5.  Frequency and percentage of Weather conditions. 

 

Weather: 
Total Safety 

Critical Events 
Baseline 

Epochs 

No adverse conditions 859 93.9
% 

99
5 

92.8
% 

Rain 47 5.1
% 69 6.4

% 

Sleet 1 0.1
% 1 0.1

% 

Snow 3 0.3
% 3 0.3

% 

Fog 3 0.3
% 2 0.2

% 

Rain and fog 2 0.2
% 1 0.1

% 

Sleet and fog 0 0.0
% 0 0.0

% 

Other 0 0.0
% 1 0.1

% 

Total 915 100.
0% 

10
72 

100.
0% 

 
the distribution of belt use for total safety-critical events was not significantly different than the 
baseline distribution (p > .05).  In Table 6 the two distributions are very similar.  However, recall 
that the 915 safety-critical events included 789 less severe “crash-relevant conflicts” and a total 
of 126 more severe events including crash, tire strikes, and near-crashes.  In these 126 more 
severe events (not shown separately in Table 6), only 59 drivers (46.8%) were belted versus 67 
(53.2%) who were not.  When the baseline distribution was compared to this distribution for 
more severe events, a significant difference was observed at the p < .02 level of significance.  
This lends some credence to the idea that driver non-use of safety belts is associated with other 
risky driving behaviors.  Further, when the combined crashes, tire strikes, and near-crashes were 
disaggregated by at-fault versus not-at-fault, approximately 45% of the at-fault truck drivers 
were observed to be wearing belts, versus 58% of the not-at-fault truck drivers.   However, this 
difference was not statistically significant at p < .05. 
    

Table 6.  Frequency and percentage of Safety Belt use. 

V1 Driver Wearing 
Safety Belt: 

Total Safety 
Critical Events 

Baseline 
Epochs 

Yes 504 
55.1
% 

62
5 

58.3
% 

No 409 
44.7
% 

44
4 

41.4
% 

Unknown 2 
0.2

3 
0.3
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% % 

Total 915 
100.

0% 
10

72 
100.

0% 

 
 

RESULTS:  DIFFERENTIAL DRIVER RISK 
Another exposure-risk question relates to differences among drivers.  That is, is crash risk 
significantly greater for some driver than for others?  Based on other recent analyses (e.g., 
Knipling et al., 2004, Knipling, 2005), the answer to this question appears to be a resounding 
“yes.”  There appears to be sharp differential crash risk among commercial drivers and also sharp 
differences in fatigue susceptibility while driving. 
 
In the current study, three principal metrics of driver risk were employed to assess individual 
driver risk and then to compare drivers: 

• Rate of involvement (per hour of driving) in “at-fault” events 
(i.e., crashes + near-crashes + crash-relevant conflicts, 680 total) 

• Rate of involvement in not-at-fault events (235 total) 
• Rate of involvement in high driver drowsiness events regardless of fault.  “High-

drowsiness” was defined as an Observer Rating of Drowsiness (ORD) of 40+ on a 100-
point scale.  There were 127 such high-drowsiness incidents. 

 
To document and quantify differential driver risk, individual driver risk rates for each of these 
three metrics were calculated and then arranged in descending order.  Within each metric, the 
worst 15 (15.8% of the 95 subjects) drivers were compared to the middle 40 (42.1%) and the best 
40 (42.1%).  A summary of the differential risk rates for these three metrics follows: 

• At-fault events (i.e., truck driver assigned “critical reason”; 680 total): 
o Worst 15 drivers: 11.0% of driving hours  38.2% of at-fault events 
o Middle 40 drivers: 46.7% of driving hours  54.1% of at-fault events 
o Best 40 drivers: 42.3% of driving hours  7.6% of at-fault events  

• Not-at-fault events (i.e., other driver assigned critical reason; 235 total): 
o Worst 15 drivers: 14.6% of driving hours  43.0% of not-at-fault events 
o Middle 40 drivers: 50.4% of driving hours  51.9% of non-at-fault events  
o Best 40 drivers:  34.9% of driving hours  5.1% of not-at-fault events  

• High-drowsiness events (includes both at-fault and not-at-fault incidents; 127 total): 
o Worst 15 drivers: 14.6% of driving hours  69.3% of drowsy events 
o Middle 40 drivers: 49.5% of driving hours  30.7% of drowsy events  
o Best 40 drivers: 35.9% of driving hours  zero drowsy events. 

 
Another way of illustrating the safety significance of high-risk drivers is to calculate the relative 
exposure-risk ratios for the worst 15 drivers on each parameter compared to the other 80 drivers 
on that parameter.  These ratios were as follows: 

• Ratio of at-fault involvement rates: 5.0 
• Ratio of not-at-fault involvement rates: 4.4 
• Ratio of drowsy event involvement rates: 13.2.  
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These distributions strongly demonstrate differential driver risk, and support the notion that a 
small percent of drivers in almost any group of drivers are associated with a grossly 
disproportionate amount of aggregate risk.  As found in previous studies, this was true for at-
fault events and for high-drowsiness events.  Surprisingly, perhaps, it was also true of not-at-
fault events, perhaps indicating that defensive driving skills also vary greatly among drivers.  
Moreover, there were moderately high intercorrelations (+0.55 to +0.67) among these three 
metrics, indicating that drivers who were high-risk per one metric tended to be high-risk on other 
metrics as well. 
 
In fairness to those drivers classified as “worst” per the above metrics, it may be noted that these 
data were collected in actual trucking operations that were not tightly controlled experimentally.  
Uncontrolled factors potentially contributing to the observed effects could include route 
differences (e.g., road design, traffic density) and/or other confounding factors influencing the 
safety performance of different drivers in the study.  
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DISCUSSION 
Two major advantages of the naturalistic driving methodology are the large amount of safety-
related data that can be obtained (because incidents are far more numerous than crashes) and the 
fact that events can be directly observed like a sports “instant replay” rather than reconstructed 
post hoc.  A third advantage is that baseline exposure or “denominator” data can be obtained 
readily along with event or “numerator” data.  In formal experimentation, the comparison of 
experimental groups to control groups permits causal inference about the effects of manipulated 
independent variables on measured dependent variables.  Although the current data were 
collected in the context of an experimental test of a safety technology (the DDWS), the data 
presented in this paper and in the Phase I report do not relate to this technology experiment but 
rather to the driving that took place as the backdrop to the experiment.  None of the factors cited 
here (i.e., trafficway flow, construction zones, traffic density, light condition, time-of-day, 
weather, safety belt use) were controlled or manipulated – rather these conditions occurred 
naturally.  In this design, causal inference is possible from the comparison of the prevalence of 
conditions under which unfavorable outcomes occurred (i.e., crashes, near-crashes, and other 
safety-critical events) to the baseline prevalence of such conditions.  When the event and 
baseline distributions were significantly different, it was inferred that the condition or other 
factor under consideration was associated with increased or decreased safety risk.  Odds ratios 
were used to quantify the change in risk associated with that condition or factor.  The delineation 
and quantification of crash risk factors may be considered conceptually in multi-factorial models 
of crash causation, but more cogently the data have direct implications for transport operations.  
The findings of this paper imply that motor carrier fleets and drivers should, to the greatest 
extent possible, seek to avoid undivided highways, construction zones, dense traffic, and evening 
rush hours.  While all of these factors were likely already known as risk-elevating conditions, the 
extent of the risk elevation is not easily known based on crash or incident data alone.  
Comparisons of event data to exposure data is needed to verify these conditions as risky and to 
quantify the risk.  Also, in at least two cases (rain and overnight driving), the data showed that 
conditions commonly regarded as risky were not actually associated with increased risk, at least 
for the types of incidents detectible through the vehicle instrumentation and analysis of dynamic 
triggered events. 
 
Some of the results of this exposure-risk analysis must be interpreted with caution.  For example, 
the finding that risk is greater under daylight than dark conditions does not necessarily imply that 
higher visibility reduces safety.  Top-level data on this variable incorporate all of the factors that 
co-vary with daylight (most notably, traffic density) as well as light level itself.  Various 
associated factors can be isolated through disaggregation of the data by co-varying factors such 
as traffic density, although the current data set is not sufficiently large for granular 
disaggregations.  Even at macro levels, however, these kinds of findings still have safety 
significance because they have practical implications.  In this case, the “bottom line” implication 
is that daytime driving may actually be riskier for large trucks than nighttime driving.   
 
Most of the exposure data presented in this paper could not feasibly be gathered through 
traditional exposure data systems such as traffic counts, logs, or surveys.  Classifying crashes by 
such factors as trafficway flow, occurrence in a construction zone, and weather conditions is 
easy, but obtaining accurate and representative exposure data relating to such factors through 
conventional means would be very difficult and/or prohibitively expensive.  Thus, fundamental 
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safety questions such as whether driving in the rain is more dangerous than driving in sunshine 
have never been answered definitively.   
 
Just as certain driving conditions are associated with elevated risk, certain drivers appear to have 
greatly elevated risk.  In the case of high-drowsiness events, the worst 15 drivers had an average 
rate of involvement that was 13 times the average of the other 80 drivers.  National and state 
crash and violation data for drivers contain no mileage or other exposure data; thus driver data 
cannot normally be analyzed as rates but rather as raw numbers or probabilities.  Differential 
exposure is a major confound in commercial driver safety data, since long-haul drivers may drive 
ten times as far per year as short-haul or utility drivers.  On the three driver risk metrics cited, 15 
of the 90 drivers (17%) accounted for 38-69% of aggregated group risk.  Hours of driving was 
collected as an exposure measure, and so these drivers could be identified as having the highest 
rates of involvement in the various types of incidents.  Other data collected in the study, and to 
be collected in future studies, are relating the observed differential risk among drivers to their 
personal traits and driving behaviors in order to seek means for predicting individual driver risk 
and interventions to reduce it.  
 
REFERENCES    
Hanowski, R.J., Knipling, R.R., Hickman, J.S., Schaudt, A.W., Olson, R.L, & Dingus, T.A. 
(2004)  Phase 1 - Preliminary Analysis of Data Collected In The Drowsy Driver Warning System 
Field Operational Test: Task 1, Preliminary Analysis Plan, for the FMCSA under NHTSA 
Contract DTNH22-00-C-07007, TO #21. 
 
Hickman, J.S., Knipling, R.R., Olson, R.L., Fumero, M., Hanowski, R.J., & Blanco, M. (2005)  
Phase 1 - Preliminary Analysis of Data Collected In The Drowsy Driver Warning System Field 
Operational Test: Task 5, Phase I Data Analysis, for the FMCSA under NHTSA Contract 
DTNH22-00-C-07007, TO #21. 
 
Knipling, R.R.  Evidence and dimensions of commercial driver differential crash risk.  
Proceedings of the  Driving Assessment 2005 Conference.  Rockport, ME, June 27-30, 2005.  
 
Knipling, R.R., Boyle, L.N., Hickman, J.S., York, J.S., Daecher, C., Olsen, E. C. B., and Prailey, 
T.D. (2004)  Synthesis Report #4:   Individual Differences and the High- Risk Commercial 
Driver.  Project Final Report, Transportation Research Board Commercial Truck & Bus 
Synthesis Program.  ISSN 1544-6808, ISSN 0-309-08810-0. 
 
Knipling, R.R. and Hickman, J.S.  (2005)  Surveys on carrier safety management problems, 
high-risk drivers, & management solutions.  Paper and presentation for the 2005 Truck & Bus 
Safety & Security Symposium, Alexandria, VA, November 14-16, 2005. 
 
Lancaster, R. and Ward, R.  (2002)  The contribution of individual factors to driving behaviour: 
Implications for managing work-related road safety.  Entec UK Limited, Health and Safety 
Executive, Research Report 020, United Kingdom. 
 
Citation:  Knipling, R.R. Hanowski, R.J.; Hickman, J.S., Olson, R.L., Dingus, T.A. and Carroll, R.J.  
Exposure-risk analysis of large truck naturalistic driving data.  Proceedings of the 2005 Truck & Bus Safety & 
Security Symposium, Alexandria, VA, November 14-16, 2005.  


